mars.tensor.nanmean¶

mars.tensor.
nanmean
(a, axis=None, dtype=None, out=None, keepdims=None, combine_size=None)[source]¶ Compute the arithmetic mean along the specified axis, ignoring NaNs.
Returns the average of the tensor elements. The average is taken over the flattened tensor by default, otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.
For allNaN slices, NaN is returned and a RuntimeWarning is raised.
 Parameters
a (array_like) – Tensor containing numbers whose mean is desired. If a is not an tensor, a conversion is attempted.
axis (int, optional) – Axis along which the means are computed. The default is to compute the mean of the flattened tensor.
dtype (datatype, optional) – Type to use in computing the mean. For integer inputs, the default is float64; for inexact inputs, it is the same as the input dtype.
out (Tensor, optional) – Alternate output tensor in which to place the result. The default is
None
; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. See doc.ufuncs for details.keepdims (bool, optional) –
If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original a.
If the value is anything but the default, then keepdims will be passed through to the mean or sum methods of subclasses of Tensor. If the subclasses methods does not implement keepdims any exceptions will be raised.
combine_size (int, optional) – The number of chunks to combine.
 Returns
m – If out=None, returns a new array containing the mean values, otherwise a reference to the output array is returned. Nan is returned for slices that contain only NaNs.
 Return type
Tensor, see dtype parameter above
Notes
The arithmetic mean is the sum of the nonNaN elements along the axis divided by the number of nonNaN elements.
Note that for floatingpoint input, the mean is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for float32. Specifying a higherprecision accumulator using the dtype keyword can alleviate this issue.
Examples
>>> import mars.tensor as mt
>>> a = mt.array([[1, mt.nan], [3, 4]]) >>> mt.nanmean(a).execute() 2.6666666666666665 >>> mt.nanmean(a, axis=0).execute() array([ 2., 4.]) >>> mt.nanmean(a, axis=1).execute() array([ 1., 3.5])