Integrate with joblibΒΆ

Joblib is a library integrated with scikit-learn to make machine learning jobs parallel. We create a backend for joblib with Mars remote and users can make their scikit-learn tasks parallel with Mars.

To enable the backend, you need to register it with the code below.

from mars.learn.contrib.joblib import register_mars_backend

After that, it is possible to create a Mars parallel backend with Mars service endpoint or existing Mars session. When nothing specified, default or local session will be used.

import joblib
# create with Mars endpoint
with joblib.parallel_backend('mars', service='http://<host>:<port>'):
    # scikit-learn code
# create with existing Mars session
sess = new_session('http://<host>:<port>')
with joblib.parallel_backend('mars', session=sess):
    # scikit-learn code

A simple example is shown below, where we fit a SVM classifier with randomized search. All you need is to replace the service endpoint in joblib.parallel_backend with your own service endpoint.

import joblib
import sklearn
from sklearn.datasets import load_digits
from sklearn.model_selection import RandomizedSearchCV
from sklearn.svm import SVC

from mars.learn.contrib.joblib import register_mars_backend

digits = load_digits()
param_space = {
    'C': np.logspace(-6, 6, 30),
    'gamma': np.logspace(-8, 8, 30),
    'tol': np.logspace(-4, -1, 30),
    'class_weight': [None, 'balanced'],
model = SVC(kernel='rbf')
search = RandomizedSearchCV(model, param_space, cv=5, n_iter=10, verbose=10)

with joblib.parallel_backend('mars', service='http://<host>:<port>'):,

Note that joblib can only be used with data small enough to be held inside a single machine. For huge datasets, please use learning algorithms implemented with Mars objects.