Source code for mars.tensor.datasource.tri

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 1999-2020 Alibaba Group Holding Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools

import numpy as np

from ...lib import sparse
from ... import opcodes as OperandDef
from ...core import TilesError
from ...serialize import KeyField, Int32Field
from ...utils import check_chunks_unknown_shape
from ..array_utils import create_array
from ..core import TensorOrder
from .core import TensorHasInput
from .zeros import TensorZeros
from .array import tensor as astensor


class TensorTri(TensorHasInput):
    def __call__(self, m, order=None):
        order = TensorOrder.C_ORDER if order is None else order
        return self.new_tensor([m], shape=m.shape, order=order)

    def to_chunk_op(self, *args):
        k, = args
        op = self.copy().reset_key()
        op._k = k
        return op

    @classmethod
    def tile(cls, op):
        check_chunks_unknown_shape(op.inputs, TilesError)
        tensor = op.outputs[0]

        m = op.input
        k = op.k
        is_triu = type(op) == TensorTriu

        fx = lambda x, y: x - y + k
        nsplits = m.nsplits
        cum_size = [np.cumsum(s).tolist() for s in nsplits]

        out_chunks = []
        for out_idx in itertools.product(*[range(len(s)) for s in nsplits]):
            i, j = out_idx[-2:]
            ld_pos = cum_size[-2][i] - 1, cum_size[-1][j] - nsplits[-1][j]
            ru_pos = cum_size[-2][i] - nsplits[-2][i], cum_size[-1][j] - 1

            ld_fx = fx(*ld_pos)
            ru_fx = fx(*ru_pos)

            chunk_shape = tuple(nsplits[i][idx] for i, idx in enumerate(out_idx))
            if (is_triu and ld_fx > 0 and ru_fx > 0) or (not is_triu and ld_fx < 0 and ru_fx < 0):
                # does not cross, fill with zeros
                chunk_op = TensorZeros(dtype=op.dtype, gpu=op.gpu, sparse=op.sparse)
                out_chunk = chunk_op.new_chunk(None, shape=chunk_shape,
                                               index=out_idx, order=tensor.order)
            else:
                lu_pos = ru_pos[0], ld_pos[1]
                chunk_k = fx(*lu_pos)

                input_chunk = m.cix[out_idx]
                chunk_op = op.to_chunk_op(chunk_k)
                out_chunk = chunk_op.new_chunk([input_chunk], shape=chunk_shape,
                                               index=out_idx, order=tensor.order)

            out_chunks.append(out_chunk)

        new_op = op.copy()
        return new_op.new_tensors(op.inputs, tensor.shape, chunks=out_chunks, nsplits=m.nsplits)

    @classmethod
    def execute(cls, ctx, op):
        chunk = op.outputs[0]
        f = 'triu' if isinstance(op, TensorTriu) else 'tril'
        if op.sparse:
            ctx[chunk.key] = getattr(sparse, f)(ctx[op.inputs[0].key], k=op.k)
        else:
            ctx[chunk.key] = create_array(op)(
                f, ctx[op.inputs[0].key], op.k)


class TensorTriu(TensorTri):
    _op_type_ = OperandDef.TENSOR_TRIU

    _input = KeyField('input')
    _k = Int32Field('k')

    def __init__(self, k=None, **kw):
        super().__init__(_k=k, **kw)

    @property
    def k(self):
        return self._k


[docs]def triu(m, k=0, gpu=None): """ Upper triangle of a tensor. Return a copy of a matrix with the elements below the `k`-th diagonal zeroed. Please refer to the documentation for `tril` for further details. See Also -------- tril : lower triangle of a tensor Examples -------- >>> import mars.tensor as mt >>> mt.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1).execute() array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = astensor(m) gpu = m.op.gpu if gpu is None else gpu op = TensorTriu(k, dtype=m.dtype, sparse=m.issparse(), gpu=gpu) return op(m)
class TensorTril(TensorTri): _op_type_ = OperandDef.TENSOR_TRIL _input = KeyField('input') _k = Int32Field('k') def __init__(self, k=None, **kw): super().__init__(_k=k, **kw) @property def k(self): return self._k
[docs]def tril(m, k=0, gpu=None): """ Lower triangle of a tensor. Return a copy of a tensor with elements above the `k`-th diagonal zeroed. Parameters ---------- m : array_like, shape (M, N) Input tensor. k : int, optional Diagonal above which to zero elements. `k = 0` (the default) is the main diagonal, `k < 0` is below it and `k > 0` is above. gpu : bool, optional Allocate the tensor on GPU if True, None as default Returns ------- tril : Tensor, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu : same thing, only for the upper triangle Examples -------- >>> import mars.tensor as mt >>> mt.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1).execute() array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = astensor(m) gpu = m.op.gpu if gpu is None else gpu op = TensorTril(k, dtype=m.dtype, sparse=m.issparse(), gpu=gpu) return op(m)