Source code for mars.tensor.datasource.identity

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 1999-2020 Alibaba Group Holding Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .eye import eye


[docs]def identity(n, dtype=None, sparse=False, gpu=False, chunk_size=None): """ Return the identity tensor. The identity tensor is a square array with ones on the main diagonal. Parameters ---------- n : int Number of rows (and columns) in `n` x `n` output. dtype : data-type, optional Data-type of the output. Defaults to ``float``. sparse: bool, optional Create sparse tensor if True, False as default gpu : bool, optional Allocate the tensor on GPU if True, False as default chunks : int or tuple of int or tuple of ints, optional Desired chunk size on each dimension Returns ------- out : Tensor `n` x `n` array with its main diagonal set to one, and all other elements 0. Examples -------- >>> import mars.tensor as mt >>> mt.identity(3).execute() array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) """ return eye(n, dtype=dtype, sparse=sparse, gpu=gpu, chunk_size=chunk_size)